Monthly Archives: January 2016

what’s the say of IDTechEx Analysts

Launches of fuel cell cars are reportedly planned by up to six carmakers from 2015 including Tata Motors of India, owners of Jaguar Land Rover. They are portrayed as pivotal in creating success for pure electric cars but the truth is very different. More is explained in the IDTechEx report Future Technology for Hybrid and Pure Electric Cars 2015-2025.
Toyota has been the first to declare its hand with full details of its contribution the Mirai. People listen to Toyota because it is way ahead as leader in EVs overall with sales about four times those of number two according to analysts IDTechEx. It was right to say that affordable pure-electric cars using batteries were not ready for prime time and right to persevere with hybrids. It knows about pure electric vehicles: it is global leader in pure electric forklifts.
However, Toyota is wrongly reported as “betting the shop” on fuel cell cars. Indeed, a managing director of Toyota Satoshi Ogiso has joked that their Chairman Mr Takeshi Uchiyamada, who was behind the hugely successful Prius hybrid during its ten wilderness years and is behind their fuel cells, is now a Don Quixote figure.
Fuel cell rollout projects across the world are actually extremely cautious and modest. For example, the European HyFive program involves Toyota, BMW, Daimler, Honda and Hyundai. It only aims to get 110 fuel cell vehicles on the road by contributing $45 million.
Progress is still slow, following the invention of the fuel cell in 1839 and Honda having arguably the first production fuel cell car the FCX Clarity and the Toyota FCEV Highlander appearing in 2008, only tiny numbers being deployed. Indeed, IDTechEx puts fuel cell cars at only 1% of all hybrid and pure electric cars sold worldwide in 2024.
Franco Gonzalez, EV analyst at IDTechEx explains, “Fuel cells will not be competitive with conventional engines in up-front cost for at least 15 years. Indeed, they need very expensive new hydrogen fuelling infrastructure in addition.”
He continues, “The Germans may achieve that and the Californians are sprinkling 100 across the state by 2017 but that still means frequent diversions into further grid-locked roads to find the stuff. Fuel cells could eventually make sense for fleets such as forklifts and buses because providing their hydrogen refue?ling is trivial, given their fixed routes. Indeed, fuel cells are in about 8000 forklifts in the USA where hydrogen is cheaper. Reduced cost of ownership and no local pollution could become market drivers in closed systems”.
“While it is commendable that fuel cell car production costs have tumbled to the order of $100,000 each, that is still a long way from being competitive. Therefore we are not surprised that the Toyota Mirai fuel cell car, costing a premium $57,000 in the USA and £63,104 in the UK before grants, is constrained to test levels of only 700 worldwide in 2015 despite initial orders for 1500. Only about 2,000 units will be very expensively made in 2016 and approximately 3,000 units in 2017 – then only tens of thousands in the 2020s, says Toyota”.
“So far, compared to a regular car, the fuel cell car offers bottom end range of only 300 miles, unimpressive acceleration and fuel cost, probably a poor resale price and diversion to refuel with the hydrogen from non-sustainable sources (just as electricity and gasoline to charge cars usually comes from non-sustainable sources). The Toyota Mirai is very much a work in progress with its poor headroom in the back due to passengers sitting on the large hydrogen tanks. Many find it ugly due to the huge air scoops at the front for the extra radiators cooling the fuel cell”.
“Meanwhile, the year is approaching when affordable battery cars arrive with the same lack of pollution at point of use, the same 300 miles range but acceptable resale price due to being simpler and lasting longer. In 2020, or not long after, that could provide lift-off in sales way beyond fuel cell cars. Indeed, fuel cell cars perpetuate the bad practice of putting platinum in a consumer product and they still need a supercapacitor or battery to do the heavy lifting. For example, the Toyota Mirai launched in 2015 has a 1.5kWh NiMH battery”.
“So far, fuel cells are usually only range extenders for hybrids though one day they may manage all load variations. Even then they will need separate devices to accept the energy harvesting from braking, shock absorbers and photovoltaics.”
IDTechEx would not be surprised to find Toyota launching hybrid cars with next-generation fuel extenders that are cheaper to buy and to own than fuel cells and easier to refuel. The question may then become whether to keep the exceptionally high subsidies for fuel cell cars when zero pollution at point of use becomes viable with arguably greener pure-electric battery or supercabattery cars that need less investment. Indeed, electricity to charge the competing pure electric cars is increasingly green with greener grid power and increased use of local solar, including over the car itself, whereas affordable and easily accessed green hydrogen remains elusive.
As outlined in the IDTechEx report, Range Extenders for Electric Vehicles Land, Water & Air 2015-2025, some of the other choices of range extender for hybrids beyond fuel cells are starting to be adopted by Toyota’s competitors in 2015 such as the quiet rotary combustion engine in the Proton hybrid car and some of these will be prevalent in 2020 as advanced forms like the Libralato appear.

Control Units On Transmission

Modern day cars are offered with both Automatic and Manual Transmission as per the customer choice. In comparison to manual transmission, automatic transmissions enhance the driving comfort and also fuel efficient as it independently determines the point where engines run most efficiently. There are various aspects to discuss about the Advancement of Technology in Transmission Control Units.

Going High-tech: Modern Transmission Control Units are designed to meet high precision digital intelligence in order to find out engine’s ideal operating point, the control unit posses high-tech computer enabling complex operation of various kinds of automatic transmission systems.  The processing speed of a modern transmission unit is incredibly faster than the computers used in the lunar mission.

Conventional Automatic: A conventional automatic transmission uses various programs stored in the control unit to shift the gears. Most of cars are equipped with a switch strategically placed on the steering helping the drivers to shift gears avoiding errors and adds precision transmission power. Most common conventional transmission is designed with 6 gears though some ultra-efficient versions are designed with 9 gears.

Automated Manual Transmission: An Automated Manual Transmission, abbreviated as AMT, is a combination of manual and automatic transmission. It offers the best of comfort and convenience of an automatic with an individual control of manual transmission. The clutch opens during the idling condition and utilizes the energy generated when it’s closed. This transmission drastically reduces carbon emissions and saves fuel in the process.

Dual Clutch Automated Transmission: This type of transmission comprises two separate transmissions. One is used for even gear shift and other one for odd gear shift. Both clutches shift back and forth between the transmissions within a fraction of second, allowing precision gear shift. The complex coordination in a dual clutch transmission is possible due to sophisticated transmission control system by a powerful processing.

Continuously Variable Transmission: Abbreviated as CVT, used without any shifting points that completely eliminates shifting response delays. As result, allowing the driver to accelerate accurately without any interruptions as the driving force is available all the times. The vehicle does not even shift back and forth between fixed shifting points, a feature most essential during steep inclines. CVT is widespread in Asia and North American markets.

e-Clutch: An e-Clutch provides the comfort of any automated to a manual transmission in a cost effective way.  Drivers can shift into gear one by just stepping into gas pedal, the e-Clutch automates the clutch but not the transmission. The clutch pedal produces an electrical signal and sends it to the actuator, which decouples the clutch. This affordable transmission acts as an alternative to a fully automated transmission essentially useful for the drivers of compact cars who find themselves in a stop and go traffic within the urban spheres.

Coasting: The e-Clutch manual transmission can also benefit fuel efficient coasting functions, which is only possible with automatic transmissions. Coasting expands on the well-known start-stop function and enables additional fuel savings of up to ten percent. When this function is used, the engine not only switches off at traffic lights, but also while the vehicle is moving.

Find Simulation Propels Electric Cars

Due to its size and booming economy, China is now the world’s largest auto market, and industry analysts predict sales of 20 million cars in 2012 alone. Hence, the government is looking for greener alternative to gasoline to power their cars, trucks and buses. Although battery-driven cars today make up a small portion of the market, hybrid cars in China should still exceed 200,000 this year. In addition, there are approximately 125 million battery-driven bicycles on the road.

 A key component of such vehicles is their batteries. Lithium-ion cells, the technology that powers most laptop computers, cell phones and other electronic devices, are the most popular type used in hybrid cars because the cells are smaller and lighter than alternative batteries. China produces revenues of $3.6 billion in lithium ion batteries each year.

The Tianjin Institute of Power Sources

Despite the widespread use of lithium ion batteries, there are still some concerns about the risk of potential fire hazards. Addressing this issue is the Tianjin Institute of Power Sources, established in 1958, one of two national laboratories involved in battery testing and evaluation. The Institute has more than 1,400 employees, of which some 400 are technical staff. The lab focuses on standards research for battery safety and makes design recommendations, which many automobile manufacturers follow.

When it comes to cell safety, many factors come into play, but which ones are the most significant? Without simulations, finding the answer would require considerable funds and tedious testing, while repeating dangerous experiments and trying to control every aspect of them.

To simulate the thermal behavior of the cells at adiabatic conditions, we created a 3D model that includes 12 positive electrodes, each measuring6.5 cm × 5 cm × 5 mm and each rated for approximately 1 Ah. The model coupled heat transfer and electrochemical reactions together. In our studies of new types of cells, the temperature rose slowly at first but eventually went over to thermal runaway (Figures 1 and 2). We calculated the major exothermal peaks and found very good correlation between the model and experimental results.

Thanks to the model, I can more easily optimize the cell geometry and study the thermal behavior of its materials,which is important in understanding the cells’ safety aspects and is also helpful in product design. COMSOL models help in building safety awareness and also to save money. For a typical project, we usually run hundreds of experiments, where each one costs roughly $300. Now, because of the models, we can cut the number of experiments down to just ten or so. Also, without simulation, we would need a week to produce each experiment and another week to run it. With the simulation, I can test tens of designs in hours and send one or two very promising ones for trials.

How to Better At Driving

From being more mechanical to surprisingly intellectual is what defines now-a-days cars that are all ready to embrace the trending software updates. Cars that get software updates not only shrink gap between your car and dealer but stands on the front line to provide improved safety, fortified performance and reduced driver’s distraction while driving. While these many benefits are amazing each and every car lover, an evident advantage of getting those benefits without gearing up wheels is what buzzing in the automotive industry – Yeah, there is no need to travel under the roof of a dealership every time a new update got pop out – It is easy to get updates released from the manufacturer straight away on car with the help of a Wi-Fi connection.

Despite every car tends to hurl off the point being old with the help of sophisticated software updates, only cars from some leading manufacturers like Tesla, Ford, Toyota are simplifying the customer needs and grabbing newness through innovative software updates.

Tesla Motors, one of the world’s popular car brands renowned for producing electric cars is committed to offer a series of software updates for its acclaimed Model S in 2015. In its first set of updates, the software can analyze road conditions and driver’s route, controls driver from driving at high speeds and stops the attendant access of using personal data through valet mode, performs automatic braking and blind-spot detection alongside providing topography that alarms driver if the car is moving out of a charging location. Once the car automatically downloads and installs the code issued by the company, it gets updates.

This U.S. based car brand is also planning to provide another set of updates after few months from first set of updates release, that consists of an option that allows car to drive itself, and guides towards the destination.

Not just these, but Tesla already wowed its Model S owners with a remote software update that increased car speed more to the existing in the year beginning. Model S P85D can now accelerate from 0 to 60mph within just 0.1 to 3.1 seconds with the help of a new software update – which made a difference in its previous version that takes 3.2 seconds in the insane mode to accelerate the same speed range.

Ford, an American Automaker with a global presence is set to offer software updates for its latest infotainment system Sync 3 – the all new 2015 model, after partnering with software market giant Microsoft to keep the infotainment system updated and also to give its customers more freedom to get updates. Software updates received by Sync 3 from Microsoft with the enabled WiFi allows the system to stay updated with the current.

Sync 3 infotainment system equipped Ford cars can stay update to the latest with the Microsoft’s reliable and easier software downloads, which is an unrivaled smart process compared to its previous way of downloading Sync updates to USB thumb drive and then again updating it manually through dashboard.

How To Gain From Simulation Based Engineering

Growing Automotive Industry

The global automotive industry has been growing constantly. Technologies such as connected transport, smart driver experience, improved battery management systems and better fuel efficiency are reforming the automotive industry.Innovation never stops!

Automotive manufacturers are required to work in uncertain conditions with increasing complexity as a result of wide range of products available to the customer, changing technologies, increasing pressure to innovate, environmental concerns and globalization.

Simulation-based engineering

Engineers are constantly under pressure to develop products that are future-proof. Hence, it is vital to bring the right expertise together that can combine multiple engineeringdisciplinesto handle challenging applications that lead to faster production.

Simulation-based engineeringhelps develop the products in a risk-free environment. This is a faster and more cost effective way to test the products when the expectations are high and failure can be disastrous.Simulation is the key to shorteningtime tomarket as it will accelerate the workflow from design to prototype.

COMSOL Multiphysics enables automotive engineersto accurately investigate design concept to production and fully benefit from the virtual prototyping capabilities that it offers. With COMSOL Multiphysics engineers can couple electromagnetics with heat transfer, structural mechanics, fluid flow, and other physical phenomena, allowing them to accuratelysolve real world problems.

A thermoelectric cooler application is one of 50 app examples available with COMSOL Multiphysics. The user may test different geometries, thermocouple configurations, and material selection in order to determine the ideal cooler option for a specific configuration or an optimized design for best performance.

Researchers working within the automotive industry have used COMSOL Multiphysicsto study corrosion in automotive parts found in car paneling, for example. Simulation helpsresearchers investigate electrochemical reactions on the surface of the rivet, analyze decay in sheet metal, and understand the effects of geometry in the corrosion process.

Multiphysics for everyone

It’s important to support the experts who often have to serve the entire organization while covering a diverse range of simulation needs,by bringing simulation to a larger group of people. The latest version of COMSOL Multiphysics and its Application Builder provides simulation experts with the tools needed to turn their detailed physics and mathematical models into easy-to-use simulation apps for use by everyone in their organization and beyond.

Designers can easily build a simplified interface based on their model in order to let anyone in the product development team test different operating conditions and configurations. Given how competitive the automotive industry is, building simulation apps for an entire team will allow designers to maketheir expertise easily available and free up resources to develop new concepts.

In order to get the products out in the market faster, experts should be able to deploy their simulations easily that is accessible to a larger group of people. This is already a reality thanks to the addition of the Application Builder to COMSOL Multiphysics for creating simulation apps and the introduction of COMSOL Server to distribute them via a COMSOL Client or browser.